Soliton turbulence in shallow water ocean surface waves.
نویسندگان
چکیده
We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm, for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described theoretically by the soliton limit of the Korteweg-deVries equation, a completely integrable soliton system: Hence the phrase "soliton turbulence" is synonymous with "integrable soliton turbulence." For periodic-quasiperiodic boundary conditions the ergodic solutions of Korteweg-deVries are exactly solvable by finite gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the energetic peak of a storm have low frequency power spectra that behave as ∼ω-1. We use the linear Fourier transform to estimate this power law from the power spectrum and to filter densely packed soliton wave trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ∼ω-1 region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation, which supports our interpretation of the data as soliton turbulence. From the probability density of the solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.
منابع مشابه
Macroscopic dynamics of incoherent soliton ensembles: soliton-gas kinetics and direct numerical modelling
We undertake a detailed comparison of the results of direct numerical simulations of the soliton gas dynamics for the Korteweg – de Vries equation with the analytical predictions inferred from the exact solutions of the relevant kinetic equation for solitons. Two model problems are considered: (i) the propagation of a ‘trial’ soliton through a one-component ‘cold’ soliton gas consisting of rand...
متن کاملThe Deterministic Generation of Extreme Surface Water Waves Based on Soliton on Finite Background in Laboratory
This paper aims to describe a deterministic generation of extreme waves in a typical towing tank. Such a generation involves an input signal to be provided at the wave maker in such a way that at a certain position in the wave tank, say at a position of a tested object, a large amplitude wave emerges. For the purpose, we consider a model called a spatial-NLS describing the spatial propagation o...
متن کاملSoliton interaction as a possible model for extreme waves in shallow water
Interaction of two long-crested shallow water waves is analysed in the framework of the two-soliton solution of the Kadomtsev-Petviashvili equation. The wave system is decomposed into the incoming waves and the interaction soliton that represents the particularly high wave hump in the crossing area of the waves. Shown is that extreme surface elevations up to four times exceeding the amplitude o...
متن کاملOceanic LES Simulations to Interpret and Synthesize Turbulence Measurements Obtained During CBLAST-Low
Because of limited wind fetch and shallow water depth, air-sea interaction in coastal oceans is very different from that in the open ocean. Surface waves in coastal oceans often have a sea state far from the fully-developed sea. As shown in recent observations (Donelan et al., 1993; Garrett, 1997), drag coefficient is a strong function of wave age. At the same wind speed, the air-sea momentum f...
متن کاملExact Solitary Wave Solutions in Shallow Water
Long's equation describes stationary flows to all orders of nonlinearity and dispersion. Dissipation is neglected. In this paper, Long's equation is used to attempt to model the propagation of a solibore -a train of internal waves in shallow water at the deepening phase of the internal tide. 1. The Solibore Phenomenon The internal tide in shallow water often has a sawtooth shape rather than a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 113 10 شماره
صفحات -
تاریخ انتشار 2014